
A Black-Box Graph Partitioner for Generalized Deep
Neural Network Parallelization

Jaume Mateu Cuadrat[0000−0003−0560−4180], Daon Park[0000−0003−2312−3049], and
Bernhard Egger �[0000−0002−6645−6161]

Seoul National University, Republic of Korea
{jaume,daon,bernhard}@csap.snu.ac.kr

Abstract. In the quest for higher accuracy, large deep neural networks (DNNs)
have grown significantly over the past few years. Training and executing large
networks with trillions of parameters requires high-end hardware that is expen-
sive to own or rent. A more economical alternative is to distribute the workload to
several less powerful but cheaper machines. To devise an efficient workload di-
vision, existing parallelization strategies require users to posses intricate knowl-
edge of the model, available hardware, and algorithms. In this paper, we present
BBGraP, a device- and model-agnostic black-box partitioner that computes effi-
cient parallelization plans for deep learning inference. For a given network and
hardware configuration, BBGraP generates a data-parallel execution plan for each
machine. The initial workload partition is optimized by eliminating redundant op-
erations, data transfers, and synchronization points. As a proof-of-concept, BB-
GraP is applied to a set comprising three distributed nodes and achieves a 30%
reduced latency compared to a single node.

Keywords: Deep Learning · Inference Parallelization · Resource Scheduling

1 Introduction
Deep neural networks (DNNs) are now ubiquitously adopted in many domains [1, 6,
13]. Recent large DNNs, such as the autoregressive language model GPT-3, achieve
impressive performance, however, providing the necessary hardware resources to train
and run such large models with trillions of parameters has become a challenge [4].

An established alternative to owning hardware is cloud computing. Cloud com-
puting allows businesses to add and remove resources on demand [3]; however, the
high-end servers required to train and execute large DNNs are expensive to rent [2]. A
more economical alternative is to distribute the workload to several, but less powerful
machines that cost only a fraction of high-end servers.

Several techniques distribute a large DNN to a multitude nodes, such as data paral-
lelism [5], model parallelism [9], and intra-layer parallelism [11]. Finding the optimal
division is a complex task as the best division depends on the hardware configuration,
the number of nodes, and the network [10]. Data parallel workload divisions can split
the work along different dimensions, further enlarging the number of possible divisions.

Existing parallelization methods require intricate knowledge of the network and the
available hardware to create an efficient work division. In this work, we present BB-
GraP, a model- and device-agnostic technique to partition and optimize a given DNN



2 J. Mateu Cuadrat et al.

Fig. 1: The BBGraP framework.

workload for a number of heterogeneous nodes. BBGraP distributes a DNN to a vari-
able number of heterogeneous nodes. It first produces an initial distribution and adds
the necessary data transfer and synchronization operations. In a second step, a graph
optimizer removes unnecessary operators, removes or tailors data transfers, and elim-
inates synchronization operations that are not required anymore. Initial results show
that the parallel workload achieves a 30% lower latency on a three-node configuration
compared to a single, more powerful node.

The remainder of this paper is organized as follows. Section 2 discusses the back-
ground and related work. Section 3 describes the operation and components of BBGraP.
In Section 4, we present preliminary results of workload divisions on up to three homo-
geneous nodes. Section 5, finally, concludes this paper and discusses future work.

2 Background and Related Work
Distributed deep learning techniques employ data parallelism, model parallelism, and
intra-layer parallelism. Data parallelism distributes the data to all workers at the ex-
pense of sending the full model to all workers and thus increasing memory require-
ments. Model parallelism distributes the model layer-by-layer which may cause bottle-
necks between the worker nodes. Intra-layer parallelism divides operators between the
workers which in turn requires synchronization to maintain operator semantics.

Different types of data partitions and workload distributions have been explored in
the past. MoDNN [7] divides the network and sends the data via Wi-Fi to different
devices. The network is partitioned layer-by-layer, hence, data synchronization is re-
quired at the end of each layer. DeepThings [14] focuses on early layers of the network
where size of activations exceeds that of the weights. Layers are divided in the height-
and width-dimension. DeepThings is aimed at IoT devices and lacks flexibility when
it comes to the shapes of the partitions. DeeperThings [12] focuses on fully-connected
layers and layers where the size of the weights is significantly larger than that of input
activations. This approach is limited to weight and output partitioning, and only sup-
ports specific partitionings. DeepThings and DeeperThings outperform MoDNN be-
cause they don’t require synchronization after each layer; however, both methods lack
flexibility in the type of generated partitionings.

The CSDF partitioner [8] performs both model and data partition. Similar to MoDNN,
only weight and output partitionings are supported that require synchronization after
each layer. CSDF focuses on throughput, so not all resources are utilized at all times.



A Black-Box Graph Partitioner for Generalized Deep Neural Network Parallelization 3

Fig. 2: ShapeMap examples (N : batches, C: channels, H: rows, W : columns).

3 BBGraP: A Black-Box DNN Model Partitioner
BBGraP takes a DNN model and a hardware configuration as inputs. After transforming
the network into an internal format, an initial workload partition is created. This par-
tition synchronizes all nodes after each layer. In a second step, BBGraP analyzes and
optimizes the execution plan for each node by cropping or eliminating unnecessary data
transfers and synchronization operations. Figure 1 depicts the organization of BBGraP.

3.1 Transformer

The transformation step converts an existing network into BBGraP’s internal ShapeMap
format. Figure 2 shows a few examples of ShapeMaps partitioned in various dimen-
sions. A ShapeMap can even define intervals with multiple ranges as shown in the first
example of Figure 2. The generated network hierarchy closely resembles the original
network and encompasses all required parameters to partition the workload and later
regenerate partitioned, stand-alone networks in the original format.

3.2 Partitioner

For the initial partitioning, BBGraP divides each layer into a an evenly distributed work-
load across all available nodes. The initial partitioning is computed from the last layer to
the first using the final output ShapeMap. This direction makes it easier to compute the
overlaps that occur due to different stride, padding, and dilation parameters. As shown
in Equation 1, the output is equally divided by the number of nodes. Table 1 defines
the variables used in the equations. The remainder of the integer division O/Nd is dis-
tributed to the nodes in a round-robin manner. For example, an 8 × 8 output feature
map partitioned to three nodes in width direction results the partitions pO(w,0) = 3×8,
pO(w,1) = 3× 8, and pO(w,2) = 2× 8.

pO(d,i) = bO/Ndc (1)

Once the output dimensions are known, BBGraP computes the input division by
taking the kernel size, dilation, stride, and padding into account. First, the true kernel
size is realized with Equation 2. A kernel with a dilation D = 1 is the kernel itself, but
for dilation values larger than 1, the kernel is spread out as illustrated in Figure 3.

tKd = (Kd − 1) ·Dd + 1 (2)



4 J. Mateu Cuadrat et al.

Symbol Description
d Partitioning direction (c, h, or w)
Nd Number of nodes assigned to direction d
I / O Original input / output size

pI(d,i) / pO(d,i) Input/output partition size, partitioned in direction d and assigned to node i
Kd Kernel size in direction d
tKd True kernel size in direction d

Dd, Sd, IVd Dilation, stride, and interval in direction d
P(d0,d1) Padding size in direction of d0 (h or w) and d1 (left or right)

Table 1: Table of variables used in the equations

(a) 3×3 kernel with dilation 1. (b) 3×3 kernel with dilation 2. (c) 3×3 kernel with dilation 3.

Fig. 3: 3× 3 kernels with different dilation values.

Using the true kernel size, the size of the input is given by Equation 3; Figure 4
illustrates the calculation of the input partition for an output of 3(̇1 × 1) and a 3 × 3
kernel with dilation and stride of 2.

IV(d,i) = (O − 1) · Sd + tKd (3)

The start and end index of the input data partition for node i are given by Equations 4
and 5. P(d,0) denotes the padding in either width-left or height-left, and P(d,1) denotes
the padding in either width-right or height-right direction. For example, P(w,0) refers to
padding at the left side of the feature map, and P(h,1) denotes padding at the bottom of
the feature map.

Left(d,i) =

{
0 if i = 0,
Sd ·

∑i−1
j=0 pO(d,j) − P(d,0) otherwise.

(4)

Right(d,i) =


IV(d,i) + Left(d,i) − P(d,0) if i = 0,
IV(d,i) + Left(d,i) − P(d,1) if i = Nd − 1,
IV(d,i) + Left(d,i) otherwise.

(5)

The input partitioned in direction d for node i is given by Equation 6.

pI(d,i) = [Left(d,i),Right(d,i)] (6)

Once all partitions have been created, BBGraP inserts concatenation and crop oper-
ators after each layer to join the outputs and prepare the inputs for the next layer.



A Black-Box Graph Partitioner for Generalized Deep Neural Network Parallelization 5

Fig. 4: Example of calculating input interval size.

3.3 Graph Optimizer

The initial partitioning creates a full copy of the output data at each node. This intro-
duces many unnecessary data transfer, synchronization, and crop operators, depending
on which parts of the previous layer’s output are required as inputs to the following
layer. The graph optimizer analyzes the available output and required input data for
each node and removes unnecessary operators. As illustrated in Figure 5, there are four
distinct cases (b)-(e). Figure 5 (a) shows the initial partitioning with output α of layer
l − 1, the full activations β and the required input γ for layer l.

1. Input bigger than output, Figure 5(b): the missing data is fetched from device
node 1 and concatenated on device node 2.

2. Input identical to output, Figure 5(c): no data dependencies exist, and crop and
concatenation operators are deleted.

3. Input smaller than output, Figure 5(d-e): if the generated output is larger than the
required input on the same node, in most cases, no data dependencies exist and a
crop operator is used to reduce the input data to the expected size. It is, however,
possible that a data dependency still exists; in that case, the optimizer adjusts the
data transfer and crop operator to make sure the necessary data is fetched before
the computation continues on device node 2.

4 Evaluation
4.1 Graph Partitioning and Optimization

Fig. 6 illustrates the operation of BBGraP on a small toy network. Figure 6(a) shows
the initial network comprising two convolutional layers. The initial partition to three
nodes with data transfer operations (crop and concatenate) is shown in Figure 6(b); data
dependencies are shown in red. The graph optimizer is able to remove unnecessary data
transfer and synchronizations for nodes 1 and 3 since the size of the first convolution’s
output is identical to the required input for the second convolution as illustrated by
Figure 6(c).



6 J. Mateu Cuadrat et al.

(a) (b) (c) (d) (e)

Fig. 5: Graph optimizations: 5a shows the initial state prior to optimization. 5b−5e
illustrate the optimization process in dependence of the dimensions of the output and
next layer’s input.

(a) Original (b) Initial partitioning (c) After applying graph optimizations

Fig. 6: Original, initial, and optimized graph. Red arrows denote data dependen-
cies/synchronization points between the nodes.



A Black-Box Graph Partitioner for Generalized Deep Neural Network Parallelization 7

1 10 50 100
Batches

0

20

40

60

80

100

La
te

nc
y

1.3 0.9 0.8
9.6 6.6 6.4

48.2

32.5 33.1

96.6

65.2 66.8

1 node
2 nodes
3 nodes

Fig. 7: Latency of ResNet50 inference on 1-3 nodes.

4.2 Latency of Parallel Inference

For a preliminary evaluation of BBGraP, we compare the performance of single-node
inference with parallelized workloads to two and three homogeneous nodes. The paral-
lelized network is ResNet50; each node is equipped with an Intel i5-10400 6-core/12-
thread processor and sufficient memory. The network operators are executed using In-
tel’s oneDNN library; data transfers and synchronizations orchestrated by a small cus-
tom runtime. Due to limitations of the runtime, BBGraP was artificially limited to out-
put channel division.

Figure 7 plots the interference latency of ResNet50 for a batch size of 1, 10, 50, and
100 on one to three nodes. We observe that using two nodes reduces the latency signif-
icantly. With three nodes, however, latency does not improve anymore. The culprit is
the non-scalable output channel division that requires full synchronization of all output
data to all nodes after each convolution. We even observe a small increase in latency for
larger batch sizes; this is because our communication library does not use broadcast but
transfers the output of one node to all other nodes in a serial manner.

5 Conclusion and Future Work

This paper has presented our ongoing work on BBGraP, a device- and model-agnostic
framework that computes an efficient workload division for DNN inference. While the
framework still has many shortcomings, the results show the potential of the presented
approach.

At the moment, BBGraP only supports homogeneous nodes and both the initial
partition, the graph optimization, and the runtime to orchestrate execution on multi-
ple nodes still offer lots of room for improvements. Our ongoing and future work on
BBGraP includes support for heterogeneous nodes by providing the computational and
memory resources as an input. The graph optimizer is being improved to also consider
layer fusion; the large number of potential workload divisions in multiple directions
and fused layers will require clever search space pruning to keep the search time rea-
sonable. Finally, we are also working on improving BBGraP’s runtime to transfer data
more efficiently between nodes, particularly, for scenarios with many nodes.



8 J. Mateu Cuadrat et al.

Acknowledgments
We thank the anonymous reviewers for their helpful feedback and suggestions. This
work was funded, in parts, by the Korean National Research Foundation by grants
2022R1F1A1074967, 21A20151113068 (BK21 Plus for Pioneers in Innovative Com-
puting - Dept. of Computer Science & Engineering, SNU), 10077609 (MOTIE/KEIT),
and the Samsung Advanced Institute of Technology. ICT at Seoul National University
provided research facilities for this study. Bernhard Egger is the corresponding author.

References
1. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.: Graph-based

deep learning for medical diagnosis and analysis: past, present and future. Sensors 21(14),
4758 (2021)

2. Amazon: Amazon ec2 p4 instances: Highest performance for ml training and hpc applica-
tions in the cloud (2020), https://aws.amazon.com/ec2/instance-types/p4/

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation computer systems 25(6), 599–616 (2009)

4. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity (2021)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems 25 (2012)

6. Lee, W., Seong, J.J., Ozlu, B., Shim, B.S., Marakhimov, A., Lee, S.: Biosignal sensors and
deep learning-based speech recognition: A review. Sensors 21(4), 1399 (2021)

7. Mao, J., Chen, X., Nixon, K.W., Krieger, C., Chen, Y.: Modnn: Local distributed mobile
computing system for deep neural network. In: Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2017. pp. 1396–1401. IEEE (2017)

8. Minakova, S., Tang, E., Stefanov, T.: Combining task-and data-level parallelism for high-
throughput cnn inference on embedded cpus-gpus mpsocs. In: International Conference on
Embedded Computer Systems. pp. 18–35. Springer (2020)

9. Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N.R., Ganger, G.R., Gib-
bons, P.B., Zaharia, M.: Pipedream: generalized pipeline parallelism for dnn training. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles. pp. 1–15 (2019)

10. Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., Vain-
brand, D., Kashinkunti, P., Bernauer, J., et al.: Efficient large-scale language model training
on gpu clusters using megatron-lm. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 1–15 (2021)

11. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.: Megatron-lm:
Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053 (2019)

12. Stahl, R., Hoffman, A., Mueller-Gritschneder, D., Gerstlauer, A., Schlichtmann, U.: Deep-
erthings: fully distributed cnn inference on resource-constrained edge devices. International
Journal of Parallel Programming 49(4), 600–624 (2021)

13. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential recommenda-
tion with bidirectional encoder representations from transformer. In: Proceedings of the 28th
ACM international conference on information and knowledge management. pp. 1441–1450
(2019)

14. Zhao, Z., Barijough, K.M., Gerstlauer, A.: Deepthings: Distributed adaptive deep learning
inference on resource-constrained iot edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37(11), 2348–2359 (2018)

https://aws.amazon.com/ec2/instance-types/p4/

	 A Black-Box Graph Partitioner for Generalized Deep Neural Network Parallelization 

